Research Interests

  • High Dimensional Statistics
  • Spectral Methods
  • Operator Learning
  • Machine Learning for Science
  • Nonparametric Statistics
  • Bandits
  • Unsupervised Learning

Click here for recent research projects

Submitted Papers

  • A conversion theorem and minimax optimality for continuum contextual bandits
    Arya Akhavan, Karim Lounici, Massimiliano Pontil, and Alexandre B. Tsybakov, 2024.
    [arXiv].

  • Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment
    Théo Gnassounou, Antoine Collas, Rémi Flamary, Karim Lounici, and Alexandre Gramfort, 2024.
    [arXiv].

  • Equivariant Representation Learning for Symmetry-Aware Inference with Guarantees
    Danie Ordoñez-Apraez, Alek Frohlick, Vladimir Kostic, Karim Lounici, Vivien Brandt, and Massimiliano Pontil, 2025.
    [arXiv].

Accepted/Published Papers

  • Meta representation learning with contextual linear bandits
    Leonardo Cella, Karim Lounici, and Massimiliano Pontil.
    To appear in Statistical Science.
    [arXiv].

  • Laplace transform based low-complexity learning of continuous Markov semigroups
    Vladimir R. Kostic, Karim Lounici, Hélène Halconruy, Timothée Devergne, Pietro Novelli, and Massimiliano Pontil.
    In ICML 2025.

  • Learning the infinitesimal generator of stochastic diffusion processes
    Vladimir Kostic, Hélène Halconruy, Timothée Devergne, Karim Lounici, and Massimiliano Pontil.
    In NeurIPS 2024.

  • Consistent long-term forecasting of ergodic dynamical systems
    Vladimir Kostic, Prune Inzerili, Karim Lounici, Pietro Novelli, and Massimiliano Pontil.
    In ICML 2024.

  • Neural Conditional Probability for Uncertainty Quantification
    Vladimir Kostic, Grégoire Pacreau, Giacomo Turri, Pietro Novelli, Karim Lounici, and Massimiliano Pontil.
    In NeurIPS 2024.

  • Learning invariant representations of time-homogeneous stochastic dynamical systems
    Vladimir R. Kostic, Pietro Novelli, Riccardo Grazzi, Karim Lounici, and Massimiliano Pontil.
    In ICLR 2024.

  • Multi-task representation learning with stochastic linear bandits
    Leonardo Cella, Karim Lounici, Grégoire Pacreau, and Massimiliano Pontil.
    In AISTATS 2023.

  • Sharp spectral rates for Koopman operator learning
    Vladimir Kostic, Karim Lounici, Pietro Novelli, and Massimiliano Pontil.
    In NeurIPS 2023 (Spotlight paper).

  • Robust covariance estimation with missing values and cell-wise contamination
    Grégoire Pacreau and Karim Lounici.
    In NeurIPS 2023.

  • Sliding window Strategy for convolutional spike sorting with Lasso
    Laurent Dragoni, Rémi Flamary, Karim Lounici, and Patricia Reynaud-Bouret.
    In Acta Applicandae Mathematicae, 179(7), 2022.

  • Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography
    Karim Lounici, Katia Meziani, and Gabriel Peyré.
    In Annals of Statistics, 46(3):1318–1351, 2018.

  • Robust matrix completion
    Olga Klopp, Karim Lounici, and Alexandre B. Tsybakov.
    In Probability Theory and Related Fields, 169:523–564, 2017.

  • Concentration inequalities and moment bounds for sample covariance operators
    Vladimir Koltchinskii and Karim Lounici.
    In Bernoulli, 2017.

  • New asymptotic results in principal component analysis
    Vladimir Koltchinskii and Karim Lounici.
    In Sankhya A, 79:254–297, 2017.

  • Normal approximation and concentration of spectral projectors of sample covariance
    Vladimir Koltchinskii and Karim Lounici.
    In Annals of Statistics, 45(1):121–157, 2017.

  • Asymptotics and concentration bounds for bilinear forms of spectral projectors of sample covariance
    Vladimir Koltchinskii and Karim Lounici.
    In Ann. Inst. Henri Poincaré, 52(4):1976–2013, 2016.

  • Estimation of low-rank covariance function
    Vladimir Koltchinskii, Karim Lounici, and Alexandre B. Tsybakov.
    In Stochastic Processes and their Applications, 126(12):3952–3967, 2016.

  • Estimation and variable selection with exponential weights
    Ery Arias-Castro and Karim Lounici.
    In Electronic Journal of Statistics, 8(1):328–354, 2014.

  • High-dimensional covariance matrix estimation with missing observations
    Karim Lounici.
    In Bernoulli, 20(3):1029–1058, 2014.

  • Sparse principal component analysis with missing observations
    Karim Lounici.
    In High Dimensional Probability VI, pages 327–356, 2013.

  • PAC-Bayesian bounds for sparse regression estimation with exponential weights
    Pierre Alquier and Karim Lounici.
    In Electronic Journal of Statistics, 5:127–145, 2011.

  • Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
    Vladimir Koltchinskii, Karim Lounici, and Alexandre B. Tsybakov.
    In Annals of Statistics, 39(5):2302–2329, 2011.

  • Global uniform risk bounds for wavelet deconvolution estimators
    Karim Lounici and Richard Nickl.
    In Annals of Statistics, 39(1):201–231, 2011.

  • Oracle inequalities and optimal inference under group sparsity
    Karim Lounici, Massimiliano Pontil, Sara Van De Geer, and Alexandre B. Tsybakov.
    In Annals of Statistics, 39(4):2164–2204, 2011.

  • Taking advantage of sparsity in multi-task learning
    Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, and Sara Van De Geer.
    In Proceedings of the 22nd Conference on Information Theory, 2009.

  • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    Karim Lounici.
    In Electronic Journal of Statistics, 2:90–102, 2008.

  • Generalized mirror averaging and D-convex aggregation
    Karim Lounici.
    In Mathematical Methods of Statistics, 16:246–259, 2007.