Research
Research Interests
- High Dimensional Statistics
- Spectral Methods
- Operator Learning
- Machine Learning for Science
- Nonparametric Statistics
- Bandits
- Unsupervised Learning
Click here for recent research projects
Submitted Papers
-
A conversion theorem and minimax optimality for continuum contextual bandits
Arya Akhavan, Karim Lounici, Massimiliano Pontil, and Alexandre B. Tsybakov, 2024.
[arXiv]. -
Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment
Théo Gnassounou, Antoine Collas, Rémi Flamary, Karim Lounici, and Alexandre Gramfort, 2024.
[arXiv]. -
Equivariant Representation Learning for Symmetry-Aware Inference with Guarantees
Danie Ordoñez-Apraez, Alek Frohlick, Vladimir Kostic, Karim Lounici, Vivien Brandt, and Massimiliano Pontil, 2025.
[arXiv].
Accepted/Published Papers
-
Meta representation learning with contextual linear bandits
Leonardo Cella, Karim Lounici, and Massimiliano Pontil.
To appear in Statistical Science.
[arXiv]. -
Laplace transform based low-complexity learning of continuous Markov semigroups
Vladimir R. Kostic, Karim Lounici, Hélène Halconruy, Timothée Devergne, Pietro Novelli, and Massimiliano Pontil.
In ICML 2025. -
Learning the infinitesimal generator of stochastic diffusion processes
Vladimir Kostic, Hélène Halconruy, Timothée Devergne, Karim Lounici, and Massimiliano Pontil.
In NeurIPS 2024. -
Consistent long-term forecasting of ergodic dynamical systems
Vladimir Kostic, Prune Inzerili, Karim Lounici, Pietro Novelli, and Massimiliano Pontil.
In ICML 2024. -
Neural Conditional Probability for Uncertainty Quantification
Vladimir Kostic, Grégoire Pacreau, Giacomo Turri, Pietro Novelli, Karim Lounici, and Massimiliano Pontil.
In NeurIPS 2024. -
Learning invariant representations of time-homogeneous stochastic dynamical systems
Vladimir R. Kostic, Pietro Novelli, Riccardo Grazzi, Karim Lounici, and Massimiliano Pontil.
In ICLR 2024. -
Multi-task representation learning with stochastic linear bandits
Leonardo Cella, Karim Lounici, Grégoire Pacreau, and Massimiliano Pontil.
In AISTATS 2023. -
Sharp spectral rates for Koopman operator learning
Vladimir Kostic, Karim Lounici, Pietro Novelli, and Massimiliano Pontil.
In NeurIPS 2023 (Spotlight paper). -
Robust covariance estimation with missing values and cell-wise contamination
Grégoire Pacreau and Karim Lounici.
In NeurIPS 2023. -
Sliding window Strategy for convolutional spike sorting with Lasso
Laurent Dragoni, Rémi Flamary, Karim Lounici, and Patricia Reynaud-Bouret.
In Acta Applicandae Mathematicae, 179(7), 2022. -
Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography
Karim Lounici, Katia Meziani, and Gabriel Peyré.
In Annals of Statistics, 46(3):1318–1351, 2018. -
Robust matrix completion
Olga Klopp, Karim Lounici, and Alexandre B. Tsybakov.
In Probability Theory and Related Fields, 169:523–564, 2017. -
Concentration inequalities and moment bounds for sample covariance operators
Vladimir Koltchinskii and Karim Lounici.
In Bernoulli, 2017. -
New asymptotic results in principal component analysis
Vladimir Koltchinskii and Karim Lounici.
In Sankhya A, 79:254–297, 2017. -
Normal approximation and concentration of spectral projectors of sample covariance
Vladimir Koltchinskii and Karim Lounici.
In Annals of Statistics, 45(1):121–157, 2017. -
Asymptotics and concentration bounds for bilinear forms of spectral projectors of sample covariance
Vladimir Koltchinskii and Karim Lounici.
In Ann. Inst. Henri Poincaré, 52(4):1976–2013, 2016. -
Estimation of low-rank covariance function
Vladimir Koltchinskii, Karim Lounici, and Alexandre B. Tsybakov.
In Stochastic Processes and their Applications, 126(12):3952–3967, 2016. -
Estimation and variable selection with exponential weights
Ery Arias-Castro and Karim Lounici.
In Electronic Journal of Statistics, 8(1):328–354, 2014. -
High-dimensional covariance matrix estimation with missing observations
Karim Lounici.
In Bernoulli, 20(3):1029–1058, 2014. -
Sparse principal component analysis with missing observations
Karim Lounici.
In High Dimensional Probability VI, pages 327–356, 2013. -
PAC-Bayesian bounds for sparse regression estimation with exponential weights
Pierre Alquier and Karim Lounici.
In Electronic Journal of Statistics, 5:127–145, 2011. -
Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
Vladimir Koltchinskii, Karim Lounici, and Alexandre B. Tsybakov.
In Annals of Statistics, 39(5):2302–2329, 2011. -
Global uniform risk bounds for wavelet deconvolution estimators
Karim Lounici and Richard Nickl.
In Annals of Statistics, 39(1):201–231, 2011. -
Oracle inequalities and optimal inference under group sparsity
Karim Lounici, Massimiliano Pontil, Sara Van De Geer, and Alexandre B. Tsybakov.
In Annals of Statistics, 39(4):2164–2204, 2011. -
Taking advantage of sparsity in multi-task learning
Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, and Sara Van De Geer.
In Proceedings of the 22nd Conference on Information Theory, 2009. -
Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
Karim Lounici.
In Electronic Journal of Statistics, 2:90–102, 2008. -
Generalized mirror averaging and D-convex aggregation
Karim Lounici.
In Mathematical Methods of Statistics, 16:246–259, 2007.