Undergraduate Courses
- Supervision in Probability and Statistics, Queens College, Cambridge (Spring 2010, Role: Supervisor)
- Supervision in Markov Chains, Queens College, Cambridge (Fall 2009, Role: Supervisor)
- Probability and Statistics - Honors (Math 3225), Georgia Tech (2014, Role: Lecturer)
- Calculus III for CS (Math 2605), Georgia Tech (Fall 2012, Role: Lecturer)
- Probability and Statistics for Engineers, Georgia Tech (2010–2016, Role: Lecturer)
- Probability and Statistics (MAM 3), Polytech Nice (Spring 2017, Role: Lecturer)
Graduate Courses
- Operator Learning, Master 2 Data Sciences, École Polytechnique (Since Fall 2024, Role: Lecturer)
- High-Dimensional Matrix Estimation, Master 2 Data Sciences, École Polytechnique (2018–2023, Role: Lecturer)
- Regression, Master X-HEC Data Science for Business, École Polytechnique (Since Fall 2018, Role: Lecturer)
- Statistical Learning and Regression, Polytechnique 3A, École Polytechnique (Since Fall 2018, Role: Lecturer)
- Fundamentals of Statistical Learning, Master Data Sciences, University of Luxembourg (2022–2023)
- Project Supervision, MAM4, MAM5-IMAFA, and Master 2 EIT Digital, Université Nice-Sophia Antipolis (Spring 2017, Role: Supervisor)
- Stochastic Processes, MAM 4, Polytech Nice (Fall 2016, Role: Lecturer)
- Statistical Linear Model (Math 6266), Georgia Tech (2010–2016, Role: Lecturer)
- Probability I (Math 6241), Georgia Tech (Fall 2013, Role: Lecturer)
- Reading Course in High-Dimensional Statistics, Georgia Tech (Spring 2016, Role: Instructor)
- Mathematical Statistics I, Georgia Tech (2010–2014, Role: Lecturer)
- Multivariate Statistical Analysis (Math 6267), Georgia Tech (2011–2013, Role: Lecturer)
- Data Challenges. I organized several data challenges for the students of the Master DSB and M2 Data Sciences programs to apply statistical and AI techniques to real-world use cases in collaboration with banking and insurance institutions (2020–2025, Role: Coordinator).
PhD Students Supervised
-
Jiangning Chen — Georgia Institute of Technology, PhD in Statistics, 2019 (Co-supervised with Heike Matzinger).
Text-classification methods and the mathematical theory of Principal Components
Current Position: Principal Applied Scientist @ Splunk.
-
Laurent Dragoni — Université Côte d’Azur, PhD in Statistics, 2022 (Co-supervised with Remi Flamary & Patricia Reynaud-Bouret).
Spike sorting for massive neurophysiological datasets: sliding window working set strategy for the estimation of convolutional models in high dimension
Current Position: Agrégé de Mathématiques.
-
Benjamin Riu — Institut Polytechnique de Paris, PhD (CIFRE), 2022 (Co-supervised with K. Meziani).
Comparaison des lois conjointes et marginales par permutation des labels pour la régression et l’estimation de densité conditionnelle
Current Position: A.I. Researcher @ Jellyfish.
-
Clément Deslandes — Institut Polytechnique de Paris & Georgia Tech (Cotutelle), PhD in Statistics, 2023 (Co-supervised with Christian Houdré).
Longest Subsequences of Random Words: Limits, Variance, and Quantum Statistics
Current Position: Agrégé de Mathématiques.
-
Grégoire Pacreau — Institut Polytechnique de Paris, PhD in Statistics, 2024.
Operator Learning for Recommender Systems and Uncertainty Quantification
Current Position: A.I. Researcher @ Qube Research & Technologies (QRT).
-
Bruno Belucci-Teixeira — Italian Institute of Technology / Institut Polytechnique de Paris, PhD Candidate (CIFRE) (Co-supervised with K. Meziani).
Non-supervised Learning in Federated Settings (tentative title)
Status: Ongoing.
-
Erfan Mirzaei — Italian Institute of Technology / Institut Polytechnique de Paris, PhD Candidate (Co-supervised with M. Pontil).
Learning from non i.i.d. data in Hilbert Spaces (tentative title)
Status: Ongoing.
-
Alek Fröhlich — Italian Institute of Technology / Institut Polytechnique de Paris, PhD Candidate (Co-supervised with Vladimir R. Kostic & M. Pontil).
Operator Methods for Statistical Inference and Causality (tentative title)
Status: Ongoing.