Undergraduate Courses

  • Supervision in Probability and Statistics, Queens College, Cambridge (Spring 2010, Role: Supervisor)
  • Supervision in Markov Chains, Queens College, Cambridge (Fall 2009, Role: Supervisor)
  • Probability and Statistics - Honors (Math 3225), Georgia Tech (2014, Role: Lecturer)
  • Calculus III for CS (Math 2605), Georgia Tech (Fall 2012, Role: Lecturer)
  • Probability and Statistics for Engineers, Georgia Tech (2010–2016, Role: Lecturer)
  • Probability and Statistics (MAM 3), Polytech Nice (Spring 2017, Role: Lecturer)

Graduate Courses

  • Operator Learning, Master 2 Data Sciences, École Polytechnique (Since Fall 2024, Role: Lecturer)
  • High-Dimensional Matrix Estimation, Master 2 Data Sciences, École Polytechnique (2018–2023, Role: Lecturer)
  • Regression, Master X-HEC Data Science for Business, École Polytechnique (Since Fall 2018, Role: Lecturer)
  • Statistical Learning and Regression, Polytechnique 3A, École Polytechnique (Since Fall 2018, Role: Lecturer)
  • Fundamentals of Statistical Learning, Master Data Sciences, University of Luxembourg (2022–2023)
  • Project Supervision, MAM4, MAM5-IMAFA, and Master 2 EIT Digital, Université Nice-Sophia Antipolis (Spring 2017, Role: Supervisor)
  • Stochastic Processes, MAM 4, Polytech Nice (Fall 2016, Role: Lecturer)
  • Statistical Linear Model (Math 6266), Georgia Tech (2010–2016, Role: Lecturer)
  • Probability I (Math 6241), Georgia Tech (Fall 2013, Role: Lecturer)
  • Reading Course in High-Dimensional Statistics, Georgia Tech (Spring 2016, Role: Instructor)
  • Mathematical Statistics I, Georgia Tech (2010–2014, Role: Lecturer)
  • Multivariate Statistical Analysis (Math 6267), Georgia Tech (2011–2013, Role: Lecturer)
  • Data Challenges. I organized several data challenges for the students of the Master DSB and M2 Data Sciences programs to apply statistical and AI techniques to real-world use cases in collaboration with banking and insurance institutions (2020–2025, Role: Coordinator).

PhD Students Supervised

  1. Jiangning Chen — Georgia Institute of Technology, PhD in Statistics, 2019 (Co-supervised with Heike Matzinger).
    Text-classification methods and the mathematical theory of Principal Components
    Current Position: Principal Applied Scientist @ Splunk.

  2. Laurent Dragoni — Université Côte d’Azur, PhD in Statistics, 2022 (Co-supervised with Remi Flamary & Patricia Reynaud-Bouret).
    Spike sorting for massive neurophysiological datasets: sliding window working set strategy for the estimation of convolutional models in high dimension
    Current Position: Agrégé de Mathématiques.

  3. Benjamin Riu — Institut Polytechnique de Paris, PhD (CIFRE), 2022 (Co-supervised with K. Meziani).
    Comparaison des lois conjointes et marginales par permutation des labels pour la régression et l’estimation de densité conditionnelle
    Current Position: A.I. Researcher @ Jellyfish.

  4. Clément Deslandes — Institut Polytechnique de Paris & Georgia Tech (Cotutelle), PhD in Statistics, 2023 (Co-supervised with Christian Houdré).
    Longest Subsequences of Random Words: Limits, Variance, and Quantum Statistics
    Current Position: Agrégé de Mathématiques.

  5. Grégoire Pacreau — Institut Polytechnique de Paris, PhD in Statistics, 2024.
    Operator Learning for Recommender Systems and Uncertainty Quantification
    Current Position: A.I. Researcher @ Qube Research & Technologies (QRT).

  6. Bruno Belucci-Teixeira — Italian Institute of Technology / Institut Polytechnique de Paris, PhD Candidate (CIFRE) (Co-supervised with K. Meziani).
    Non-supervised Learning in Federated Settings (tentative title)
    Status: Ongoing.

  7. Erfan Mirzaei — Italian Institute of Technology / Institut Polytechnique de Paris, PhD Candidate (Co-supervised with M. Pontil).
    Learning from non i.i.d. data in Hilbert Spaces (tentative title)
    Status: Ongoing.

  8. Alek Fröhlich — Italian Institute of Technology / Institut Polytechnique de Paris, PhD Candidate (Co-supervised with Vladimir R. Kostic & M. Pontil).
    Operator Methods for Statistical Inference and Causality (tentative title)
    Status: Ongoing.